Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1373, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355560

RESUMO

SMARCB1 loss has long been observed in many solid tumors. However, there is a need to elucidate targetable pathways driving growth and metastasis in SMARCB1-deficient tumors. Here, we demonstrate that SMARCB1 deficiency, defined as genomic SMARCB1 copy number loss associated with reduced mRNA, drives disease progression in patients with bladder cancer by engaging STAT3. SMARCB1 loss increases the chromatin accessibility of the STAT3 locus in vitro. Orthotopically implanted SMARCB1 knockout (KO) cell lines exhibit increased tumor growth and metastasis. SMARCB1-deficient tumors show an increased IL6/JAK/STAT3 signaling axis in in vivo models and patients. Furthermore, a pSTAT3 selective inhibitor, TTI-101, reduces tumor growth in SMARCB1 KO orthotopic cell line-derived xenografts and a SMARCB1-deficient patient derived xenograft model. We have identified a gene signature generated from SMARCB1 KO tumors that predicts SMARCB1 deficiency in patients. Overall, these findings support the clinical evaluation of STAT3 inhibitors for the treatment of SMARCB1-deficient bladder cancer.


Assuntos
Interleucina-6 , Neoplasias da Bexiga Urinária , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Transdução de Sinais/genética , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
2.
Nitric Oxide ; 138-139: 70-84, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423418

RESUMO

Dimethylarginine dimethylaminohydrolase-1 (DDAH1) expression is frequently elevated in different cancers including prostate cancer (PCa) and enhances nitric oxide (NO) production in tumor cells by metabolising endogenous nitric oxide synthase (NOS) inhibitors. DDAH1 protects the PCa cells from cell death and promotes survival. In this study, we have investigated the cytoprotective role of DDAH1 and determined the mechanism of DDAH1 in protecting the cells in tumor microenvironment. Proteomic analysis of PCa cells with stable overexpression of DDAH1 has identified that oxidative stress-related activity is altered. Oxidative stress promotes cancer cell proliferation, survival and causes chemoresistance. A known inducer of oxidative stress, tert-Butyl Hydroperoxide (tBHP) treatment to PCa cells led to elevated DDAH1 level that is actively involved in protecting the PCa cells from oxidative stress induced cell damage. In PC3-DDAH1- cells, tBHP treatment led to higher mROS levels indicating that the loss of DDAH1 increases the oxidative stress and eventually leads to cell death. Under oxidative stress, nuclear Nrf2 controlled by SIRT1 positively regulates DDAH1 expression in PC3 cells. In PC3-DDAH1+ cells, tBHP induced DNA damage is well tolerated compared to wild-type cells while PC3-DDAH1- became sensitive to tBHP. In PC3 cells, tBHPexposure has increased the production of NO and GSH which may be acting as an antioxidant defence to overcome oxidative stress. Furthermore, in tBHP treated PCa cells, DDAH1 is controlling the expression of Bcl2, active PARP and caspase 3. Taken together, these results confirm that DDAH1 is involved in the antioxidant defence system and promotes cell survival.


Assuntos
Amidoidrolases , Óxido Nítrico , Estresse Oxidativo , Transdução de Sinais , Humanos , Masculino , Amidoidrolases/biossíntese , Amidoidrolases/metabolismo , Antioxidantes/metabolismo , Apoptose , Arginina/metabolismo , Óxido Nítrico/metabolismo , Proteômica , Espécies Reativas de Oxigênio , terc-Butil Hidroperóxido/farmacologia , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas
3.
Metabolites ; 12(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35736477

RESUMO

Bladder Cancer (BLCA) is the ninth most frequently diagnosed cancer globally and the sixth most common cancer in the US. African Americans (AA) exhibit half the BLCA incidence compared to European Americans (EA), but they have a 70% higher risk of cancer-related death; unfortunately, this disparity in BLCA mortality remains poorly understood. In this study, we have used an ethnicity-balanced cohort for unbiased lipidomics profiling to study the changes in the lipid fingerprint for AA and EA BLCA tissues collected from similar geographical regions to determine a signature of ethnic-specific alterations. We identified 86 lipids significantly altered between self-reported AA and EA BLCA patients from Augusta University (AU) cohort. The majority of altered lipids belong to phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), ly sophosphatidylcholines (lysoPCs), phosphatidylserines (PSs), and diglycerides (DGs). Interestingly, levels of four lysoPCs (lyso PCs 20:3, lyso PCs 22:1, lyso PCs 22:2, and lyso PCs 26:1) were elevated while, in contrast, the majority of the PCs were reduced in AA BLCA. Significant alterations in long-chain monounsaturated (MonoUN) and polyunsaturated (PolyUN) lipids were also observed between AA and EA BLCA tumor tissues. These first-in-field results implicate ethnic-specific lipid alterations in BLCA.

4.
ACS Comb Sci ; 21(4): 241-256, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30673277

RESUMO

Dimethylarginine dimethylaminohydrolase1 (DDAH1) inhibitors are important therapeutics by virtue of their ability to control nitric oxide (NO) production by elevating asymmetric dimethylarginine (ADMA) levels. In a screening campaign, we identified that DD1E5 (3-amino-6- tert-butyl-N-(1,3-thiazol-2-yl)-4-(trifluoromethyl)thieno[2,3- b]pyridine-2- carboxamide) inhibits the DDAH1 activity both in vitro and in cultured cells. Mechanistic studies found that DD1E5 is a competitive inhibitor (dissociation constant ( Ki) of 2.05 ± 0.15 µM). Enzyme kinetic assays showed time and concentration dependent inhibition of DDAH1 with DD1E5, which shows tight binding with an inactivation rate constant of 0.2756 ± 0.015 M-1 S-1. Treatment of cancer cells with DDAH1 inhibitors shows inhibition of cell proliferation and a subsequent decrease in NO production with ADMA accumulation. DD1E5 reversed the elevated VEGF, c-Myc, HIF-1α, and iNOS levels induced by exogenous DDAH1 overexpression in PCa cells. Moreover, DD1E5 significantly increased intracellular levels of ADMA and reduced NO production, suggesting its therapeutic potential for cancers in which DDAH1 is upregulated. In in vitro assays, DD1E5 abrogated the secretion of angiogenic factors (bFGF and IL-8) into conditional media, indicating its antiangiogenic potential. DD1E5 inhibited in vivo growth of xenograft tumors derived from PCa cells with DDAH1 overexpression, by reducing tumor endothelial content represented with low CD31 expression. VEGF, HIF-1α, and iNOS expression were reversed in DD1E5 treated tumors compared to respective control tumors. In this work, integrating multiple approaches shows DD1E5 is a promising tool for the study of methylarginine-mediated NO control and a potential therapeutic lead compound against pathological conditions with elevated NO production such as cancers and other diseases.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Arginina/análogos & derivados , Inibidores Enzimáticos/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Piridinas/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Arginina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos Nus , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Piridinas/química , Piridinas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
J Cell Biochem ; 118(12): 4358-4369, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28436114

RESUMO

Tumor protein D52 (TPD52), a proto-oncogene is overexpressed in a variety of epithelial carcinomas and plays an important role in cell proliferation, migration, and cell death. In the present study we found that the treatment of IMR-32 neuroblastoma (NB) cells with retinoic acid (RA) stimulates an increase in expression of TPD52. TPD52 expression is detectable after 72 h, can be maintained till differentiation of NB cells suggesting that TPD52 is involved in differentiation. Here, we demonstrate that TPD52 is essential for RA to promote differentiation of NB cells. Our results show that exogenous expression of EGFP-TPD52 in IMR-32 cells resulted cell differentiation even without RA. RA by itself and with overexpression of TPD52 can increase the ability of NB cells differentiation. Interestingly, transfection of IMR-32 cells with a specific small hairpin RNA for efficient knockdown of TPD52 attenuated RA induced NB cells differentiation. Transcriptional and translational level expression of neurotropic (BDNF, NGF, Nestin) and differentiation (ß III tubulin, NSE, TH) factors in NB cells with altered TPD52 expression and/or RA treatment confirmed essential function of TPD52 in cellular differentiation. Furthermore, we show that TPD52 protects cells from apoptosis and arrest cell proliferation by varying expression of p27Kip1, activation of Akt and ERK1/2 thus promoting cell differentiation. Additionally, inhibition of STAT3 activation by its specific inhibitor arrested NB cells differentiation by EGFP-TPD52 overexpression with or without RA. Taken together, our data reveal that TPD52 act through activation of JAK/STAT signaling pathway to undertake NB cells differentiation induced by RA. J. Cell. Biochem. 118: 4358-4369, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas de Neoplasias/biossíntese , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia , Antígenos de Diferenciação/biossíntese , Linhagem Celular Tumoral , Humanos , Isoformas de Proteínas/biossíntese , Proto-Oncogene Mas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...